Petrochronology: Methods and Applications

EDITORS

Matthew J. Kohn
Boise State University, USA

Martin Engi & Pierre Lanari
University of Bern, Switzerland

Cover image: Thorium compositional maps of monazite (X-ray counts, cps) and allanite (atoms per formula unit, apfu). Left: Monazite crystal from a Greater Himalayan Sequence orthogneiss, central Nepal. Ellipses show locations of ion probe Th–Pb analyses. Core shows oscillations, probably formed during igneous crystallization. An age of ca. 27 Ma likely reflects prograde metamorphic overprinting (23 Ma age straddles two chemical domains). An age of 10–11 Ma reflects hydrothermal replacement; based on Corrie and Kohn (2011). Right: Allanite from the Cima d’Asta pluton, southern Alps (NE Italy). Magmatic allanite core with oscillatory zoning (dated at 275.0±1.7 Ma (2s) by quadrupole LA-ICP-MS) formed by breakdown of early-magmatic monazite, preserved as relics (282.3±2.3 Ma). During hydrothermal alteration Th-rich allanite rim (267.8±4.7 Ma) formed, and its partial breakdown produced a new generation of monazite (267.0±4.7 Ma); based on Burn (2016), compare Chapter 13, this volume.

Series Editor: Ian Swainson
MINERALOGICAL SOCIETY OF AMERICA
GEOCHEMICAL SOCIETY
Petrochronology: Methods and Applications

Reviews in Mineralogy and Geochemistry
FROM THE SERIES EDITOR

It has been a pleasure working with the volume editors and authors on this 83rd volume of Reviews in Mineralogy and Geochemistry. Several chapters have associated supplemental figures and or tables that can be found at the MSA website. Any future errata will also be posted there.

Ian P. Swainson, Series Editor
Vienna, Austria

PREFACE

“Thy friendship makes us fresh”
Charles, King of France, Act III, Scene III
(Henry VI, Part 1, by William Shakespeare)

Friendship does indeed make us fresh—fresh in our enthusiasm, fresh in our creativity, and fresh in our collaborative potential. Indeed, it is the growing friendship between petrology and geochronology that has given rise to the new field of petrochronology. This, in turn, has opened a new array of methods to investigate the history of the geologic processes that are encoded (oh, so tantalizingly close!) in rocks, and to develop a broad new array of questions about those processes.

All friendships have their initiations and growth periods, and the origins and evolution of petrochronology are discussed in some detail in the Introduction. In brief, petrochronology has been practiced for many decades, but was first labeled in 1997. The seeds for this specific volume were planted in 2013, watered in 2015, and (we hope) will thrive as a resource through the coming decades. Indeed, it is hard to envision any future work involving the geochronology of igneous or metamorphic rocks in the context of tectonics and petrogenesis that is not somehow petrochronologic.

Our overall goal in this volume is to capture a high-resolution image of the state of petrochronology during its ascendance, not simply for historical purposes, but rather to provide a solid foundation for the future. We have striven to corral the very best practitioners in the field in hopes that their wisdom can help train new generations of petrochronologists, and inspire them to greater enthusiasm and more diverse research directions. The high quality of each chapter suggests that we might just have succeeded in this endeavor!

We thank all the authors for their immense investment of time and resources to pull off the writing of this book. Similarly, the reviewers worked overtime to temper the sometimes soft metal of each chapter (often on regrettably short notice from the editors…). Ian Swainson rapidly turned around our manuscripts, hardly giving us rest between submission of final versions and editing proofs. We appreciate his remarkable attention to detail and unflagging patience. We also thank our governmental, corporate, society, and university sponsors who helped support the accompanying short courses: the US National Science Foundation, Cameca & Nu Instruments, ESL, Selfrag, the European Association of Geochemistry, The European Geosciences Union, the Geochemical Society, Société Française de Minéralogie et Cristallographie, Boise State University, and the University of Bern. Last, but not least, we thank our families and close friends for somehow managing to put up with us over the long two years that it took to bring about this book.

Matthew J. Kohn, Boise, Idaho, USA
Martin Engi, Bern, Switzerland
Pierre Lanari, Bern, Switzerland
March 2017
TABLE OF CONTENTS

1 Significant Ages—An Introduction to Petrochronology

 Martin Engi, Pierre Lanari, Matthew J. Kohn

 INTRODUCTION AND SCOPE .. 1
 SIGNIFICANCE OF AGE DATA .. 2
 PETRO-CHRONO-LOGICAL APPROACH AND AMBITION 3
 An example: P–T–t path for geodynamic and tectonic modeling . 4
 Methods of choice, choice of methods 6
 EVOLUTION OR REVOLUTION? .. 9
 ACKNOWLEDGMENTS ... 10
 REFERENCES .. 11

2 Phase Relations, Reaction Sequences and Petrochronology

 Chris Yakymchuk, Chris Clark, Richard W. White

 INTRODUCTION ... 13
 MAJOR MINERALS ... 14
 Garnet ... 15
 Plagioclase .. 15
 ACCESSORY MINERALS .. 16
 Epidote .. 16
 Titanite .. 16
 Rutile ... 16
 Zircon .. 18
 Monazite ... 19
 Xenotime ... 21
 PHASE EQUILIBRIA MODELLING .. 21
 Bulk compositions ... 22
 Computational Methods .. 22
 Modeled P–T paths .. 23
 Modelling suprasolidus zircon and monazite dissolution 24
 SUBSOLIDUS PHASE RELATIONS AND REACTION SEQUENCES ... 25
 Metapelite ... 25
 Greywacke .. 28
3 Local Bulk Composition Effects on Metamorphic Mineral Assemblages

Pierre Lanari, Martin Engi

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION AND SCOPE</td>
</tr>
<tr>
<td>THEORETICAL BASIS AND LIMIT OF FORWARD THERMODYNAMIC ANALYSIS</td>
</tr>
<tr>
<td>SUPRASOLIDUS PHASE RELATIONS AND REACTION SEQUENCES</td>
</tr>
<tr>
<td>Metapelite</td>
</tr>
<tr>
<td>Greywacke</td>
</tr>
<tr>
<td>Average mid ocean ridge basalt</td>
</tr>
<tr>
<td>Summary of reaction sequence modelling</td>
</tr>
<tr>
<td>COMPLICATING FACTORS</td>
</tr>
<tr>
<td>Changes in effective bulk composition</td>
</tr>
<tr>
<td>Bulk composition and the suprasolidus behaviour of zircon and monazite</td>
</tr>
<tr>
<td>Effects of open system behaviour on accessory minerals</td>
</tr>
<tr>
<td>Inclusion/host relationships</td>
</tr>
<tr>
<td>CONCLUDING REMARKS</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
</tr>
<tr>
<td>REFERENCES</td>
</tr>
</tbody>
</table>

BULK ROCK COMPOSITION EFFECTS ON MELT PRODUCTION AND ACCESSORY MINERALS

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCAL REACTIONS AND FORMATION OF DOMAINAL ROCKS</td>
</tr>
<tr>
<td>Evidence of local reactions in discrete textural domains</td>
</tr>
<tr>
<td>Chemical potential gradients and element transfer between domains</td>
</tr>
<tr>
<td>Chemical potential gradient within domains</td>
</tr>
<tr>
<td>Size of the equilibrium volume versus scale of the model</td>
</tr>
</tbody>
</table>

QUANTITATIVE MAPPING OF THE LOCAL BULK COMPOSITION AS A BASIS FOR MODELING

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantitative X-ray mapping</td>
</tr>
<tr>
<td>Strategy to derive local bulk composition from X-ray maps using XMapTools</td>
</tr>
<tr>
<td>Gibbs free energy minimization for the local bulk composition</td>
</tr>
<tr>
<td>Advantages of the micro-mapping approach</td>
</tr>
<tr>
<td>Potential artifacts affecting the local bulk composition estimates</td>
</tr>
<tr>
<td>Toward systematic quantitative trace element micro-mapping to address petrochronological problems</td>
</tr>
</tbody>
</table>

CONCLUSIONS AND PERSPECTIVES

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGMENTS</td>
</tr>
</tbody>
</table>

vi
APPENDIX 1—LOCAL BULK COMPOSITIONS FROM OXIDE WEIGHT PERCENTAGE MAPS ... 92
REFERENCES ... 93

4 Diffusion: Obstacles and Opportunities in Petrochronology

Matthew J. Kohn, Sarah C. Penniston-Dorland

INTRODUCTION AND SCOPE ... 103
PART 1: DIFFUSION THEORY AND CONTROLS ON DIFFUSIVITY 104
Fick’s laws ... 104
Multicomponent diffusion .. 105
Crystal-chemical controls on diffusion 106
Dependence of D on defects .. 109
PART 2: PETROCHRONOLOGIC CONCEPTS .. 111
Closure temperature .. 111
Geospeedometry .. 113
Diffusion in porous media: fluid–rock interaction 115
Major element thermometry ... 116
Trace element thermometry ... 119
Reaction rates .. 121
Diffusive resetting of isochrons .. 123
PART 3: EXAMPLES ... 125
Natural constraints on D .. 125
Geospeedometry from major element cation zoning 130
Geospeedometry from trace element zoning 131
Geospeedometry from chronologic zoning 132
Reaction rates .. 135
Timescales of magmatic processes from zoning in crystals 137
Magma ascent rates from zoning in glass 138
Duration of metamorphism .. 140
Fluid–rock interactions .. 141
FUTURE DIRECTIONS ... 142
Boundary conditions .. 144
Empirical diffusivities .. 144
Controls on diffusivities ... 144
Multiple element/isotope comparisons 144
Tectonics ... 145
Thermometry .. 145
ACKNOWLEDGMENTS ... 145
REFERENCES ... 145

5 Electron Microprobe Petrochronology

Michael L. Williams, Michael J. Jercinovic, Kevin H. Mahan, Gregory Dumond

INTRODUCTION ... 153
REACTION DATING ... 154
COMPOSITIONAL MAPPING, TRACE ELEMENT ANALYSIS, AND DATING BY ELECTRON MICROPROBE ... 155
Trace-element analysis by electron microprobe—analytical considerations 159
Analytical strategy ... 160
Analytical protocol ... 162
APPLICATIONS AND EXAMPLES OF EPMA PETROCHRONOLOGY 165
 Textural and compositional correlation between accessory and major phases 165
 Monazite–garnet–yttrium connection—
 Example 1: Legs Lake shear zone, Saskatchewan .. 165
 Monazite–garnet–Y connection. Example-2: dating deformation 168
 Other compositional/textural linkages with silicate assemblages 168
EPMA PETROCHRONOLOGY COMBINED WITH ISOTOPIC ANALYSIS 172
LOW-GRADE METAMORPHISM AND FLUID–ROCK INTERACTION 173
FUTURE TRENDS IN EPMA PETROCHRONOLOGY ... 174
 Electron microprobe instrumental aspects ... 174
 Thermochemical aspects ... 175
ACKNOWLEDGMENTS ... 176
REFERENCES .. 177

6 Petrochronology by Laser-Ablation Inductively Coupled Plasma Mass Spectrometry
Andrew R. C. Kylander-Clark

INTRODUCTION ... 183
VIRTUES OF LA-ICPMS ... 184
INSTRUMENTATION .. 185
 Multi-Collector (MC) ICPMS .. 185
 Single-collector (SC) ICPMS .. 185
 Laser ... 186
TREATMENT OF UNCERTAINTIES ... 187
LASER ABLATION SPLIT STREAM (LASS) ... 187
 Plumbing for LASS .. 191
APPLICATIONS .. 192
 LASS of metamorphic zircon ... 193
 Single-shot LASS (SS-LASS) analysis of thin metamorphic zircon rims 193
 Depth profiling of rutile ... 193
 Petrochronology of detrital zircon .. 193
 Monazite petrochronology ... 194
 Titanite Petrochronology .. 194
CONCLUDING REMARKS ... 196
ACKNOWLEDGMENTS ... 196
REFERENCES .. 196

7 Secondary Ionization Mass Spectrometry Analysis in Petrochronology
Axel K. Schmitt, Jorge A. Vazquez

INTRODUCTION AND SCOPE .. 199
INSTRUMENTATION AND SAMPLE PREPARATION .. 201
 Large-magnet radius ion microprobes for petrochronology, and complementary
 instrumentation .. 201
Large magnet radius instruments for geochronology and petrochronology 201
Sample preparation for petrochronology 206

QUANTITATIVE SIMS ANALYSIS
- Relative sensitivity and instrumental mass fractionation factors 209
- Two- and three-dimensional relative sensitivity calibrations 210
- Specific analytical consideration and strategies for petrochronology 212
- Data reporting for U–Th–Pb geochronology 217

COMPARING SIMS TO OTHER TECHNIQUES 220
CASE STUDIES FOR SIMS PETROCHRONOLOGY 221

OUTLOOK
- Improved detection 223
- Ion source developments 223
- Sample holder design and automation 224
- Final considerations 224

ACKNOWLEDGMENTS 225

REFERENCES 225

8

Petrochronology and TIMS

Blair Schoene, Ethan F. Baxter

INTRODUCTION 231

A BRIEF REVIEW OF TIMS GEOCHRONOLOGY 232

U–Pb ID-TIMS PETROCHRONOLOGY
- Workflows in petrochronology 234
- Limits on sample size and precision 234
- Linking textures with dates in ID-TIMS U–Pb geochronology 240
- Linking geochemistry with U–Pb ID-TIMS geochronology 242

SAMARIUM–NEODYMIUM ID-TIMS PETROCHRONOLOGY
- Why ID-TIMS Sm–Nd for Petrochronology? 246
- Sample Preparation for Sm–Nd TIMS Petrochronology 248
- Sm–Nd Age Precision 252

THE FUTURE 255

ACKNOWLEDGMENTS 256

REFERENCES 256

9

Zircon: The Metamorphic Mineral

Daniela Rubatto

INTRODUCTION 261

PREAMBLE: THE MANY FACES AND NAMES OF METAMORPHIC ZIRCON 261

PETROGRAPHY OF ZIRCON
- Textural relationships and inclusions 264
- Internal zoning 266
- Deformation 267

MINERAL CHEMISTRY 268
- Th/U systematics 268
Table of Contents

Rare earth elements ... 271
Ti-in-zircon thermometry .. 275
ISOTOPE SYSTEMATICS ... 276
U–Pb isotopes ... 277
Lu–Hf isotopes ... 279
Oxygen isotopes .. 280
PETROGENESIS ... 284
Diagenesis and low-\(T\) metamorphism 284
Metamorphic zircon and fluids at sub-solidus conditions 284
Metamorphic zircon and melts .. 286
Zircon forming reactions .. 287
CONCLUSIONS AND OUTLOOK ... 288
ACKNOWLEDGMENTS ... 289
REFERENCES ... 289

10 Petrochronology of Zircon and Baddeleyite in Igneous Rocks: Reconstructing Magmatic Processes at High Temporal Resolution

Urs Schaltegger, Joshua H.F.L. Davies

INTRODUCTION ... 297
WORKFLOW FOR ZIRCON PETROCHRONOLOGY ... 298
WORKFLOW FOR BADDELEYITE PETROCHRONOLOGY ... 301
PETROCHRONOLOGY OF ZIRCON
IN INTERMEDIATE TO FELSIC SYSTEMS ... 301
Crystallization of zircon in intermediate-felsic, calc-alkaline melts .. 301
What does zircon chemistry tell us about magmatic processes? .. 308
Incremental assembly of magma batches in the upper crust— wrapping up what we have learned .. 314
PETROCHRONOLOGY OF BADDELEYITE AND ZIRCON
IN MAFIC SYSTEMS ... 316
Crystallization of zircon in mafic (tholeiitic) melts ... 316
Chemical characteristics of zircon in mafic magmas ... 317
Baddeleyite geochronology .. 319
OUTLOOK ... 322
ACKNOWLEDGMENTS ... 322
REFERENCES ... 323

11 Hadean Zircon Petrochronology

T. Mark Harrison, Elizabeth A. Bell, Patrick Boehnke

INTRODUCTION ... 329
WHY STUDY HADEAN ZIRCONS? ... 330
Modes of investigation .. 332
JACK HILLS ZIRCONS ... 335
Isotopic results .. 335
Inclusions in zircon .. 339
Zircon geochemistry .. 342
REFERENCES

ACKNOWLEDGMENTS

SUMMARY

BROADER IMPACTS OF HADEAN ZIRCONS

A LINK TO THE LATE HEAVY BOMBARDMENT?

OTHER PROPOSED MECHANISMS FOR FORMING

HADEAN JACK HILLS ZIRCONS

OTHER WESTERN AUSTRALIAN HADEAN ZIRCON OCCURRENCES

Mt. Narryer

Churla Wells

Maynard Hills

Mt Alfred

NORTH AMERICAN HADEAN ZIRCON OCCURRENCES

Northwest Territory, Canada

Greenland

ASIAN HADEAN ZIRCON OCCURRENCES

Tibet

North Qinling

North China Craton

Southern China

SOUTH AMERICAN HADEAN ZIRCON OCCURRENCES

Southern Guyana

Eastern Brazil

OTHER PROPOSED MECHANISMS FOR FORMING

HADEAN JACK HILLS ZIRCONS

Icelandic rhyolites

Intermediate igneous rocks

Mafic igneous rocks

Sagduction

Impact melts

Heat pipe tectonics

Terrestrial KREEP

Multi-stage scenarios

Summary

A LINK TO THE LATE HEAVY BOMBARDMENT?

BROADER IMPACTS OF HADEAN ZIRCONS

The role of Hadean zircons in geochemical innovation

The role of Hadean zircons in scientific thought

SUMMARY

ACKNOWLEDGMENTS

REFERENCES

12

Petrochronology Based on REE-Minerals:
Monazite, Allanite, Xenotime, Apatite

Martin Engi

INTRODUCTION AND SCOPE

REE-minerals

CRYSTAL CHEMISTRY AND CONSEQUENCES

Monazite and xenotime

Apatite

Allanite

Sector zoning

Radiation damage

Diffusion and closure temperature

GEOTHERMOMBAROMETRY
Titanite Petrochronology

Matthew J. Kohn

INTRODUCTION AND SCOPE .. 419
CRYSTAL CHEMISTRY OF TITANITE ... 420
 Crystal structure and chemical substitutions .. 420
 Thermometry and barometry ... 421
 Sector zoning ... 422
IGNEOUS TITANITE ... 423
 Petrogenesis .. 423
 Trace element geochemistry .. 425
METAMORPHIC TITANITE .. 428
 Petrogenesis .. 428
CHRONOLOGIC SYSTEMS .. 428
 U–Pb .. 428
 Sm–Nd .. 430
 Diffusional biases ... 430
EXAMPLES ... 432
 Temperature–time histories from single rocks ... 432
 Temperature–time histories from multiple rocks ... 434
 Pressure–time histories .. 435
 Igneous processes ... 436
FUTURE DIRECTIONS ... 437
14 Petrology and Geochronology of Rutile

Thomas Zack, Ellen Kooijman

INTRODUCTION AND SCOPE...443
RUTILE OCCURRENCE...443
MICROSTRUCTURES OF RUTILE IN METAMORPHIC ROCKS........445
ZIRCONIUM-IN-RUTILE THERMOMETRY AND RUTILE–QUARTZ OXYGEN ISOTOPE THERMOMETRY 449
NIOBNIUM AND Cr DISTRIBUTION AS SOURCE ROCK INDICATORS452
URANIUM–LEAD GEOCHRONOLOGY ..453
Uranium, Th and common Pb distribution in rutile.............................453
Analytics..454
Uranium–lead systematics in rutile ..455
Cooling vs formation ages...457
Comparison with U–Pb titanite ages ...459
CASE STUDY: THE IVREA ZONE...459
CONCLUDING REMARKS AND RECOMMENDATIONS462
ACKNOWLEDGMENTS...463
REFERENCES ..463

15 Garnet: A Rock-Forming Mineral Petrochronometer

E.F. Baxter, M.J. Caddick, B. Dragovic

INTRODUCTION ...469
PETRO- OF GARNET ..471
Textures of garnet—provider of tectonic context472
Garnet as a pressure and temperature sensor474
Garnet as a tracer of reaction pathways and fluid–rock interaction483
CHRONO- OF GARNET ..492
Garnet geochronology ..493
The development of zoned garnet geochronology509
Geospeedometry with garnet..510
EXAMPLES OF PETRO-CHRONOLOGY OF GARNET512
Petrochronology of garnet: High pressure crustal metamorphism512
Petrochronology of garnet: Geospeedometry and the timescales of granulite facies metamorphism ...514
Petrochronology of garnet: Timescales of lower crustal melting514
Petrochronology of garnet: Subduction zone dehydration.................516
16 **Chronometry and Speedometry of Magmatic Processes using Chemical Diffusion in Olivine, Plagioclase and Pyroxenes**

Ralf Dohmen, Kathrin Faak, Jon D. Blundy

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>535</td>
</tr>
<tr>
<td>Types of chronometers</td>
<td>536</td>
</tr>
<tr>
<td>Basic approach of diffusion chronometry</td>
<td>538</td>
</tr>
<tr>
<td>OLIVINE</td>
<td>540</td>
</tr>
<tr>
<td>Diffusion coefficients</td>
<td>541</td>
</tr>
<tr>
<td>Determination of magma residence times using Fe–Mg, Ca, Ni, and Mn diffusion</td>
<td>541</td>
</tr>
<tr>
<td>Growth vs. diffusive zoning: stable isotopes as diffusive fingerprints</td>
<td>544</td>
</tr>
<tr>
<td>Determination of cooling rates from Fe–Mg zoning in olivine</td>
<td>545</td>
</tr>
<tr>
<td>Determination of cooling rates from Ca zoning in olivine</td>
<td>548</td>
</tr>
<tr>
<td>Determination of cooling rates to constrain thermal structure of a crustal segment</td>
<td>550</td>
</tr>
<tr>
<td>Determination of magma ascent rates using H diffusion</td>
<td>550</td>
</tr>
<tr>
<td>PLAGIOCLASE</td>
<td>554</td>
</tr>
<tr>
<td>Diffusion coefficients and specifics for trace element diffusion in plagioclase</td>
<td>555</td>
</tr>
<tr>
<td>Determination of magma residence times using Mg or Sr diffusion</td>
<td>558</td>
</tr>
<tr>
<td>Determination of cooling rates using Mg diffusion</td>
<td>559</td>
</tr>
<tr>
<td>PYROXENES</td>
<td>561</td>
</tr>
<tr>
<td>Diffusion coefficients</td>
<td>561</td>
</tr>
<tr>
<td>Determination of magma residence times using Fe–Mg diffusion in Opx and Cpx</td>
<td>563</td>
</tr>
<tr>
<td>SYNOPSIS/PERSPECTIVES</td>
<td>566</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>568</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>568</td>
</tr>
</tbody>
</table>

RiMG Series

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>HISTORY OF RiMG</td>
<td>577</td>
</tr>
<tr>
<td>HOW TO PUBLISH IN RiMG</td>
<td>577</td>
</tr>
</tbody>
</table>